Gage, Hannah

From: Gilliam, Allen

Sent: Monday, December 07, 2015 9:58 AM

To: Gage, Hannah

Subject: AR0020303_North Little Rocks May 2014 TBLL Evaluation Certification Supplement_

20151207

Attachments: NLR Local Limits Development11302015.pdf

Follow Up Flag: Follow up Flag Status: Completed

Hannah,

Would you please scan only the 1st 15 pages of the attachment to the E drive and title it what's in the subject line? Please rename the attachment "NLR TBLL eval certification supplement" (I don't know how to separate them).

I've already downloaded the remaining pages and placed them in their program.

Hope you're feeling better and glad you're back (aren't you?).

Please call if you have questions.

Allen g 501.682.0625

From: Toland, Ed [mailto:EToland@nlrwu.com]
Sent: Monday, November 30, 2015 10:39 AM

To: Gilliam, Allen

Subject: NLR Local Limit Development study

Allen,

Attached, is the PDF of the NLR local limit development study and Ashley's treatment plant metals evaluations. I have added these documents back into our Pretreatment Program binder. If you need a hard copy, let me know. I was trying to save you from having to scan them in yourself!

If you need any additional information, let me know.

Thanks,

Ed

Ed Toland, Pretreatment Supervisor NORTH LITTLE ROCK WASTE WATER UTILITY 7400 Baucum Pike, N.L.R. AR 72117 P.O. Box 17898, N.L.R. AR 72117 (501)945-7186 ext. 116 etoland@nlrwu.com COST

146	
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 1. Article Addressed to: ANDERT GENVIRONMENT ALLEN CHILIAM	A. Signature Agent Addressee B. Received by (Printed Name) C. Date of Delivery 5-7-44 D. Is delivery address different from item 1? Yes If YES, enter delivery address below:
5301 Northshoe Dr. No. Little Pock AR 72118-5317	3. Service Type ☐ Certified Mail ☐ Express Mail ☐ Registered ☐ Return Receipt for Merchandise ☐ Insured Mail ☐ C.O.D. 4. Restricted Delivery? (Extra Fee) ☐ Yes
2. Article Number	710 0000 0755 3921
PS Form 3811 February 2004 Domestic Re	turn Receipt 102595-02-M-1540

NORTH LITTLE ROCK WASTE WATER UTILITY

May 5, 2014

Certified Mail No. 7007 0710 0000 0755 3921

Arkansas Department of Environmental Quality Attention: Mr. Allen Gilliam 5301 Northshore Drive North Little Rock, AR 72118-5317

RE: AR0020303 - Faulkner Lake

Dear Mr. Gilliam:

As required by Part II (8)(b) of the above mentioned permit, we have performed a technical evaluation demonstrating that the existing technically based maximum allowable headworks loadings (MAHL) are based on current state water quality standards. The last two years data was used for the evaluation and compared to water quality standard numbers and CFR 503 Sludge Regulations.

We are certifying that the MAHL's currently in the Pretreatment Program are based on current water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility and local limits are not necessary at this time.

If there are any questions, please contact Ed Toland at (501) 945-7186 ext.116.

NORTH LITTLE ROCK WASTE WATER UTILITY

Marc E. Wilkins, P.E.

Director

Permit Number: AR0020303

AFIN: 60-00274 Page 5 of Part II

Standards. Each POTW with an approved pretreatment program shall continue to develop these limits as necessary and effectively enforce such limits.

The permittee shall, within sixty (60) days of the effective date of this permit, (1) submit a WRITTEN CERTIFICATION that a technical evaluation has demonstrated that the existing technically based local limits (TBLL) are based on current state water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination, OR (2) submit a WRITTEN NOTIFICATION that a technical evaluation revising the current TBLL and a draft sewer use ordinance which incorporates such revisions will be submitted within 12 months of the effective date of this permit.

All specific prohibitions or limits developed under this requirement are deemed to be conditions of this permit. The specific prohibitions set out in 40 CFR Part 403.5(b) shall be enforced by the permittee unless modified under this provision.

c. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in 40 CFR 122 Appendix D (NPDES Application Testing Requirements) Table II at least once/year and the toxic pollutants in Table III at least 4 times/year (quarterly). If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least 4 times/year (quarterly) on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24 hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR 136. Where composite samples are inappropriate, due to sampling, holding time, or analytical constraints, at least 4 grab samples, taken at equal intervals over a representative 24-hour period, shall be taken.

d. The permittee shall prepare annually a list of Industrial Users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements. For the purposes of this Part, significant noncompliance shall be determined based upon the more stringent of either criteria established at 40 CFR Part 403.8(f)(2)(viii) [rev. 10/14/05] or criteria established in the approved POTW pretreatment program. This list is to be published annually in the newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW during the month of March.

In addition, during the month of March the permittee shall submit an updated pretreatment program status report to the ADEQ containing the following information:

REPORTING YEAR: January 1, 2012 to December 31, 2012.

TREATMENT PLANT: Faulkner Lake Treatment Plant NPDES PERMIT AR0020303

AVERAGE POTW FLOW: 6.120 MGD % IU FLOW: 9.07

35 % LIMIT

METALS,	WQ		EFFLUEN	T DATES	SAMPLED	Constitution of the second	Labora	tory Analysis	PASS/FAIL
CYANIDE and	LEVEL		Res	ults, ug/L			EPA Method	Detection Level	35%
PHENOLS (Total)	LIMIT, ug/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2012 Avg. of 4 Qtrs.	Used	Achieved (ug/L)	SAFETY LIMIT
Antimony	NA	<20	<20	<20	<20	<20	200.7	60	NA
Arsenic	2480	3.64	3.65	3.8	1.84	3.2325	200.8	0.5	PASS
Beryllium	NA	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	200.8	0.5	NA
Cadmium	35	< 0.1	0.5	0.7	< 0.1	< 0.375	200.8	0.5	PASS
Chromium	7230	<1	<1	<1	<1	<1	200.7	10	PASS
Copper	150	1.34	3.77	5.4	4.73	3.8100	200.8	0.5	PASS
Lead	120	< 0.50	0.9	< 0.50	< 0.50	<0.6	200.8	0.5	PASS
Mercury	0.3	0.00285	0.00403	0.0871	0.00223	0.0241	1631E	0.005	PASS
Molybdenum	NA	<10	<10	<10	<10	<10	200.8	10	NA
Nickel	5540	3	4.44	2.6	1.27	2.8275	200.8	0.5	PASS
Selenium	138	<5	<5	<5	<5	<5	200.7	5	PASS
Silver	41	< 0.10	3	< 0.50	< 0.50	<1.025	200.8	0,5	PASS
Thallium	NA	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	200.8	0.5	NA
Zinc	970	64.400	28.71	37	31.63	40.4350	200.7	20	PASS
Cyanide	150	<10	<10	<10	<10	<10	SM 4500-CNE	10	PASS
Phenols (Total)	NA	<5	<5	<5	<5	<5	420.1	5	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT FAULKNER LAKE TREATMENT PLANT AR0020303 Created by: Ashley Barr 02-2014

REPORTING YEAR: January 1, 2013 to December 31, 2013

TREATMENT PLANT: Faulkner Lake Treatment Plant NPDES PERMIT AR0020303

AVERAGE POTW FLOW: 6.596 MGD % IU FLOW: 8.31

35 % LIMIT

METALS,	WQ		EFFLUEN	DATES S	AMPLED		Laborat	tory Analysis	PASS/FAIL
CYANIDE and	LEVEL		Resu	Its, mg/L			EPA Method	Detection Level	35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2013 Avg. of 4 Qtrs	Used	Achieved (ug/L)	SAFETY LIMIT
Antimony	NA	<20	<20	<20	<20	<20	200.7	60	NA
Arsenic	2480	< 0.50	5.76	6.8	< 0.50	<3.39	200.8	0.5	Pass
Beryllium	NA	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	200.8	0.5	
Cadmium	35	< 0.10	< 0.10	< 0.10	4.1	<1,1	200.8	0.5	Pass
Chromium	7230	<1	<1	<1	<1	<1	200.7	10	Pass
Copper	150	3.3	1.35	3.7	< 0.5	<2.21	200.8	0.5	Pass
Lead	120	< 0.5	< 0.5	0.6	< 0.5	< 0.53	200.8	0.5	Pass
Mercury	0.3	0.00259	0.00256	0.00533	0.00265	0.0032825	1631E	0.005	Pass
Molybdenum	NA	<10	<10	12.3	<10	<10.58	200.8	10	NA
Nickel	5540	0.89	1.5	5.1	< 0.5	<2.0	200.8	0.5	Pass
Selenium	138	<5	<5	<5	<5	<5	200.7	5	Pass
Silver	41	< 0.5	< 0.5	<0.5	1.7	< 0.8	200.8	0.5	Pass
Thallium	NA	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	200.8	0.5	NA
Zinc	970	20.60	21	14.8	<1	<14.35	200.7	20	Pass
Cyanide	150	<10	<10	<10	<10	<10	SM 4500-CNE	10	Pass
Phenois (Total)	NA	<5	41	<5	29	<20	420.1	5	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT FAULKNER LAKE TREATMENT PLANT AR0020303 Created by: Ashley Barr 02-2014

REPORTING YEAR: January 1, 2012 to December 31, 2012

TREATMENT PLANT: Faulkner Lake Treatment Plant NPDES PERMIT AR6020303

AVERAGE POTW FLOW: 6.12 MGD % IU FLOW: 9.07

Biosolids Results

35 % LIMIT

METALS,	WQ	FA		AKE DATE	S SAMPL	ED	Laboratory Analys	PASS/FAIL
CYANIDE and	LEVEL		Resu	lts, mg/kg			Method	35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2012 Avg.	Used	SAFETY LIMIT
Antimony	NA	3.375	3.5	<2.5	<2.5	<2.969	SW-846 6020A	NA
Arsenic	75	8	5	12.3	22.49	11.9475	SW-846 6020A	PASS
Beryllium	NA	<3.125	<2.5	<2.5	<2.5	<2.66	SW-846 6020A	NA
Cadmium	85	6.938	<2.5	<2.5	<2.5	<3.61	SW-846 6020A	PASS
Chromium	NA	4.938	20	26.2	40.75	22.972	SW-846 6020A	PASS
Copper	4300	43.938	104	88.9	188.78	106.2795	SW-846 6020A	PASS
ead	840	36.875	25	36.1	74.57	43.13625	SW-846 6020A	PASS
Viercury	57	<1.1933	< 0.1388	< 0.1176	< 0.1610	< 0.4027	SW-846 7471	PASS
Molybdenum	75	4.25	<2.5	3.89	11.07	< 5.43	SW-846 6020A	NA
Vickel	420	<3.125	<2.5	<2.5	15.21	< 5.83	SW-846 6020A	PASS
Selenium	100	10.25	4	3.676	1.96	4.9715	SW-846 6020A	PASS
Silver	NA	146	<2.5	<2.5	<2.5	<38.38	SW-846 6020A	PASS
Thallium	NA	<3.125	<2.5	<2.5	<2.5	<2.66	SW-846 6020A	NA
Zinc	7500	1156.250	195.5	289.7	496.26	534.4275	SW-846 6020A	PASS
Cyanide	NA	<1.5723	< 0.1658	< 0.1165	< 0.2143	< 0.5172	EPA 9010	PASS
PHENOLS (Total)	NA	16.69	8.89	5.6	24	13.7575	EPA9065	ŇÁ
ACI PBCs	49.99	ND	NA	NA	NA	NA	EPA 8082	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT FAULKNER LAKE TREATMENT PLANT AR0020303 Created by: Ashley Barr 02-2014

REPORTING YEAR: January 1, 2013 to December 31, 2013

TREATMENT PLANT: Faulkner Lake Treatment Plant NPDES PERMIT AR0020303

AVERAGE POTW FLOW: 6.596 MGD % IU FLOW: 8.31

Biosolids results

35 % LIMIT

METALS,	WQ	FA	ULKNER	LAKE DAT	ES SAMP	LED	Laboratory Analysis	PASS/FAIL
CYANIDE and	LEVEL		Resu	ilts, mg/kg			Method	35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2013 Avg. of 4 Qtrs	Used	SAFETY LIMIT
Antimony	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Arsenic	75	8	<2.5	12	<2.5	<6.25	SW-846 6020A	PASS
Beryllium	NA	<2.5	<2.5	15.5	<2.5	< 5.75	SW-846 6020A	NA
Cadmium	85	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	PASS
Chromium	NA	30	<2.5	4.5	<2.5	<9.88	SW-846 6020A	PASS
Copper	4300	424.5	45	55	34	140	SW-846 6020A	PASS
Lead	840	135.5	20.5	23	<2.5	<45.38	SW-846 6020A	PASS
Mercury	57	<4.62	< 0.4136	< 0.3019	< 0.3911	<1.432	SW-846 7471	PASS
Molybdenum	75	19.5	6.5	35.5	<2.5	<16	SW-846 6020A	NA
Nickel	420	25	3.5	14.5	<2.5	<11.38	SW-846 6020A	PASS
Selenium	100	<2.5	<2.5	7	<2.5	< 3.63	SW-846 6020A	PASS
Silver	NA	9	<2.5	<2.5	<2.5	<4.13	SW-846 6020A	PASS
Thallium	NA	<2.5	6	8.5	<2.5	<4.88	SW-846 6020A	NA
Zinc	7500	1097	113	146.5	104.5	365.125	SW-846 6020A	PASS
Cyanide	NA	<4.7393	< 0.4137	< 0.320	< 0.3911	<1.466	EPA 9010	PASS
PHENOLS (Total)	NA	30.5	8.95	19.8	15	18.495	EPA9065	NA
ACI PBCs	49.99	ND	NA	NA	NA	NA	EPA 8082	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT
FAULKNER LAKE TREATMENT PLANT AR0020303 Created by: Ashley Barr 02-2014

REPORTING YEAR: January 1, 2012 to December 31, 2012 TREATMENT PLANT: White Oak Bayou AR0038288

35 % **LIMIT**

METALS,	WQ		EFFLUEN	T DATES S	AMPLED		Laboratory A	nalysis	PASS/FAIL
CYANIDE and	LEVEL		Rest	ilts, ug/L			EPA Method	Detection Level	35%
PHENOLS (Total)	LIMIT, ug/	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2012 Avg.	Used	Achieved (ug/L)	SAFETY LIMIT
Antimony	NA	<20	<20	<20	<20	<20	200.7	60	NA
Arsenic	2480	2.4	2.87	2.3	3.53	2.78	200.8	0.5	PASS
Beryllium	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.5	200.8	0.5	NA
Cadmium	35	< 0.10	0.5	< 0.10	< 0.10	< 0.20	200.8	0.5	PASS
Chromium	7230	<1	<1	<1	<1	<1	200.7	10	PASS
Copper	150	3	8.19	6.8	12.67	7.6700	200.8	0.5	PASS
Lead	120	< 0.50	0.69	< 0.50	< 0.50	< 0.55	200.8	0.5	PASS
Mercury	0.3	0.00587	0.0117	0.234	0.00721	0.0647	1631E	0.005	PASS
Molybdenum	NA	<10	<10	<10	<10	<10	200.8	10	NA
Nickel	5540	3.2	3.87	2.1	2.63	2.95	200.8	0.5	PASS
Selenium	138	<5	<5	<5	<5	<5	200.7	5	PASS
Silver	41	< 0.10	3	< 0.50	< 0.50	<1.025	200.8	0.5	PASS
Thallium	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	200.8	0.5	NA
Zinc	970	22.800	24.26	70	50.65	41.93	200.7	20	PASS
Cyanide	150	<10	<10	<10	<10	<10	SM 4500-CNE	10	PASS
Phenols (Total)	NA	46	66	27	<5	<36	420.1	5	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

REPORTING YEAR: January 1, 2013 to December 31, 2013 TREATMENT PLANT: White Oak Bayou AR0038288

35 % LIMIT

METALS,	WQ		EFFLUEN	DATES S	AMPLED		Laboratory A	PASS/FAIL	
CYANIDE and	LEVEL		Rest	its, ug/L			EPA Method	Detection Level	35%
PHENOLS (Total)	LIMIT, ug/	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2013 Avg.	Used	Achieved (ug/L)	SAFETY LIMIT
Antimony	NA	<20	<20	29.7	<20	<22.43	200.7	60	NA
Arsenic	2480	< 0.50	5.33	8	< 0.50	<3.58	200.8	0.5	PASS
Beryllium	NA	< 0.50	< 0.50	< 0.50	< 0.50	<0.5	200.8	0.5	NA
Cadmium	35	< 0.10	< 0.10	0.5	4	<1.18	200.8	0.5	PASS
Chromium	7230	<1	<1	<1	<1	<1	200.7	10	PASS
Copper	150	5	3.12	12	< 0.50	<5.16	200.8	0.5	PASS
Lead	120	< 0.50	< 0.50	0.9	< 0.50	< 0.6	200.8	0.5	PASS
Mercury	0.3	0.00406	0.00516	0.00847	0.00819	0.0065	1631E	0.005	PASS
Molybdenum	NA	<10	<10	10.5	< 0.50	<7.75	200.8	10	NA
Nickel	5540	1.5	2.5	6.5	< 0.50	<2.75	200.8	0.5	PASS
Selenium	138	<5	<5	<5	<5	<5	200.7	5	PASS
Silver	41	< 0.50	< 0.50	3	1.7	<1.425	200.8	0.5	PASS
Thallium	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	200.8	0.5	NÁ
Zinc	970	31.100	21.1	11	<1.00	<16.05	200.7	20	PASS
Cyanide	150	<10	<10	<10	<10	<10	SM 4500-CNE	10	PASS
Phenols (Total)	NA	<5	31	<5	<5	≺11.5	420.1	5	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

REPORTING YEAR: January 1, 2012 to December 31, 2012 TREATMENT PLANT: White Oak Bayou AR0038288

Biosolids results

35 % LIMIT

METALS,	WQ	WI	nite Oak DA	TES SAM	PLED		Laboratory Analys	PASS/FAIL
CYANIDE and	LEVEL		Resul	ts, mg/kg			Method	35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2012 Avg.	Used	SAFETY LIMIT
Antimony	NA	<3.125	<5	<2.5	<5	<3,91	SW-846 6020A	NA
Arsenic	75	15.438	<5	<2.5	7	<7.48		PASS
Beryllium	NA	<3.125	<5	<2.5	<5	≤3,91	SW-846 6020A	NA
Cadmium	85	5.25	<5	3.7	<5	<4.738		PASS
Chromium	NA	7.875	10	17.44	20	<13.829		PASS
Copper	4300	41.313	269	212.4	140	165	SW-846 6020A	PASS
Lead	840	31.313	30	28.9	30	30.05	SW-846 6020A	PASS
Mercury	57	<1.1236	<1.0200	<0.4088	< 0.7278	<0.8201	SW-846 7471	PASS
Molybdenum	75	<3.125	<5	<2.5	<5	<3,91	SW-846 6020A	NA
Nickel	420	<3.125	<5	<2.5	20	<7.656	SW-846 6020A	PASS
Selenium	100	6.125	<5	6.8	<5	and the last of the second second second		PASS
Silver	NA	66	<5	9	<5	<21.25		PASS
Thallium	NA	<3.125	<5	<2.5	<5	<3,61	SW-846 6020A	NA
Zinc	7500	819	841	986.9	520	791.663	SW-846 6020A	PASS
Cyanide	NA	<1.3495	<1.4180	<0.4088	0.72778	< 0.97602	EPA 9010	PASS
PHENOLS (Total)	NA	30.36	26.94	23.3	12	23,068	EPA9065	NA
ACI PBCs	49.99	ND	NA	NA	NA	NA	EPA 8082	NA

File Name: Q\industrytWQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

REPORTING YEAR: January 1, 2013 to December 31, 2013 TREATMENT PLANT: White Oak Bayou AR0038288

Biosolids results

35 % LIMIT

METALS, CYANIDE and	WQ LEVEL	Whi	te Oak DA Resul	res samp ts, mg/kg	LED		Laboratory Ana Method	PASS/FAIL 35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2013 Avg.	Used	SAFETY LIMIT
Antimony	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Arsenic	75	8.5	8	14	6.5	9.25	SW-846 6020A	PASS
Beryllium	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Cadmium	85	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	PASS
Chromium	NA	18	12	18.5	10.5	14.75	SW-846 6020A	PASS
Copper	4300	354	232	160.5	268.5	254	SW-846 6020A	PASS
Lead	840	34	58.5	38	25.5	39	SW-846 6020A	PASS
Mercury	57	< 0.5241	<1.13	< 0.2263	<1.275	< 0.789	SW-846 7471	PASS
Molybdenum	75	10	14.5	15	4	10.9	SW-846 6020A	NA
Nickel	420	19	27.5	30.5	16.5	23.38	SW-846 6020A	PASS
Selenium	100	3.5	<2.5	7.5	<2.5	<4	SW-846 6020A	PASS
Silver	NA	4	<2.5	<2.5	<2.5	<2.88	SW-846 6020A	PASS
Thallium	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Zinc	7500	1190	781	406	1079.5	864.125	SW-846 6020A	PASS
Cyanide	NA	< 0.5241	<1.1377	< 0.2263	<1.2755	<0.7909	EPA 9010	PASS
PHENOLS (Total)	NA	30.08	27.62	14.9	31	25.768	EPA9065	NA
ACI PBCs	49.99	ND	NA	NA	NA	NA	EPA 8082	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

Created by: Ashley Barr 03-2014

REPORTING YEAR: January 1, 2012 to December 31, 2012 TREATMENT PLANT: Five Mile Permit #AR0020320

35 % LIMIT

METALS,	WQ	WHATE SUPER VIOLENCE AND THE CHARLES WELLOW ADDRESS OF A STREET, AND THE CHARLES AND THE CHARL	EFFLUEN	T DATES S	AMPLED	The second secon	Laboratory Analy	sis	PASS/FAIL
CYANIDE and	LEVEL		Rest	ilts, ug/L			EPA Method	Detection Level	35%
PHENOLS (Total)	LIMIT, ug/	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2012 Avg.	Used	Achieved (ug/L)	SAFETY LIMIT
Antimony	NA	<20	<20	<20	€20	<20	All and the second of the seco	60	NA
Arsenic	2480	1.73	3.29	3.5	4,39		200.8	0.5	PASS
Beryllium	NA	< 0.5	< 0.5	< 0.5	<0.5	<0.5	200.8	0.5	NA
Cadmium	35	< 0.10	0.3	< 0.10	<0.1	<0,15	200.8	0.5	PASS
Chromium	7230	<1	<1	<1	<1		200.7	10	PASS
Copper	150	< 0.5	9.27	12.1	4.6	<6.62	200.8	0.5	PASS
Lead	120	< 0.50	1.5	< 0.50	<0,50	< 0.75	200.8	0.5	PASS
Mercury	0.3	0.009177	0.00851	0.0179	0.00372	0.0098	1631E	0.005	PASS
Molybdenum	NA	<10	<10	<10	<10	<10	200.8	10	NA
Nickel	5540	5	5.51	4	2.12	4.16	200.8	0.5	PASS
Selenium	138	<5	<5	<5	<5	<5	200.7	5	PASS
Silver	41	< 0.10	4	< 0.50	< 0.50	<1.275	200.8	0.5	PASS
Thallium	NA	< 0.5	< 0.5	< 0.5	<0.5	<0.5	200.8	0.5	NA
Zinc	970	30.100	27.52	<1.0	64.44	<30.77	200.7	20	PASS
Cyanide	150	<10	<10	<10	<10	<10	SM 4500-CNE	10	PASS
Phenois (Total)	NA	52	40	42	31	41.25	420.1	5	NA _

File Name: QVindustryWQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

REPORTING YEAR: January 1, 2013 to December 31, 2013 TREATMENT PLANT: Five Mile Permit #AR0020320

35 % LIMIT

METALS,	WQ		EFFLUEN'		AMPLED		Laboratory A	Analysis	PASS/FAIL
CYANIDE and	LEVEL		Resu	ilts, ug/L			EPA Method	Detection Level	35%
PHENOLS (Total)	LIMIT, ug/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2013 Avg.	Used	Achieved (ug/L)	SAFETY LIMIT
Antimony	NA	<20	<20	25	<20	<21	200.7	60	NA
Arsenic	2480	< 0.50	5.82	7	< 0.50	<3.46	200.8	0.5	PASS
Beryllium	NA	< 0.50	<0.50	< 0.50	< 0.50	< 0.5	200.8	0.5	NA
Cadmium	35	< 0.10	< 0.10	< 0.10	4.1	<1.1	200.8	0.5	PASS
Chromium	7230	<1	<1	<1	<1	<1	200.7	10	PASS
Copper	150	5.6	6.30	5.5	< 0.50	<4.48	200.8	0.5	PASS
Lead	120	< 0.50	< 0.50	1.8	< 0.50	< 0.49	200.8	0.5	PASS
Mercury	0.3	0.014	0.0467	0.0103	0.0101	0.0203	1631E	0.005	PASS
Molybdenum	NA	<10	<10	11	<10	<10.25	200.8	10	NA NA
Nickel	5540	3.36	5	6	< 0.50	<3.72	200.8	0.5	PASS
Selenium	138	<5	<5	<5	<5	<5	200.7	5	PASS
Silver	41	< 0.50	< 0.50	2.26	1.8	<1.265	200.8	0.5	PASS
Thallium	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.5	200.8	0.5	NA
Zinc	970	21.1	28.9	<1.0	<1.0	<13	200.7	20	PASS
Cyanide	150	<10	<10	<10	<10	<10	SM 4500-CNE	10	PASS
Phenois (Total)	NA	60	57	61	<5	<45.75	420.1	5	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

REPORTING YEAR: January 1, 2012 to December 31, 2012 TREATMENT PLANT: Five Mile Permit #AR0020320

Biosolids results

35 % LIMIT

METALS, CYANIDE and	WQ LEVEL	Fiv	e Mile DAT Resul	ts, mg/kg	LED		Laboratory Analysis Method	PASS/FAIL 35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2012Avg. of	Used	SAFETY LIMIT
Antimony	NA	<3.571	<5	<2.5	<5	<4.02	SW-846 6020A	NA
Arsenic	75	11.857	<5	<2.5	<5	<6.09	SW-846 6020A	PASS
Beryllium	NA	<3.571	<5	<2.5	<5	<4.02	SW-846 6020A	NA
Cadmium	85	4.857	<5	3.37	<5	<4.557	SW-846 6020A	PASS
Chromium	NA	<3.571	7	8.98	20	9.933	SW-846 6020A	PASS
Copper	4300	39.429	335	188.6	310	218	SW-846 6020A	PASS
Lead	840	33.714	20	18.8	30	25.63	SW-846 6020A	PASS
Mercury	57	< 0.7911	<1.04	< 0.9345	< 0.8921	< 0.9144	SW-846 7471	PASS
Molybdenum	75	<3.571	<5	<2.5	<5	<4.02	SW-846 6020A	NA
Nickel	420	<3.571	<5	<2.5	20	<7.77	SW-846 6020A	PASS
Selenium	100	7.429	7	6.23	<5	<6.41	SW-846 6020A	PASS
Silver	NA	104	8	7	10	32	SW-846 6020A	PASS
Thallium	NA	<3.571	<5	<2.5	<5	<4.02	SW-846 6020A	NA
Zinc	7500	1257	847	712.12	1600	1104.066	SW-846 6020A	PASS
Cyanide	NA	<1.0215	<1.1181	<1.8692	< 0.8879	<1.224	EPA 9010	PASS
PHENOLS (Total)	NA	18.07	17.45	15.5	13	16.063	EPA9065	NA
ACI PBCs	49.99	ND	NA	NA	NA	NA	EPA 8082	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

Created by: Ashley Barr 03-2014

REPORTING YEAR: January 1, 2013 to December 31, 2013

TREATMENT PLANT: Five Mile Permit #AR0020320

Biosolids results

35 % LIMIT

METALS, CYANIDE and	WQ LEVEL	Five Mile DATES SAMPLED Results, mg/kg					Laboratory Ana Method	PASS/FAIL 35%
PHENOLS (Total)	LIMIT, mg/L	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	2013Avg.	Used	SAFETY LIMIT
Antimony	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Arsenic	75	4.5	6.5	14.5	3	7.125	SW-846 6020A	PASS
Beryllium	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Cadmium	85	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	PASS
Chromium	NA	15	10	18.5	3.5	11.75	SW-846 6020A	PASS
Copper	4300	389.5	358	341.5	209.5	325	SW-846 6020A	PASS
Lead	840	29.5	82	40.5	13	41.25	SW-846 6020A	PASS
Mercury	57	<1.2200	< 0.9478	< 0.8703	< 0.0734	< 0.778	SW-846 7471	PASS
Molybdenum	75	3.5	13.5	17	<2.5	<9.13	SW-846 6020A	NA
Nickel	420	15	20.5	26	8	17.38	SW-846 6020A	PASS
Selenium	100	4	<2.5	10.5	<2.5	<4.88	SW-846 6020A	PASS
Silver	NA	6	7	<2.5	<2.5	<4.5	SW-846 6020A	PASS
Thallium	NA	<2.5	<2.5	<2.5	<2.5	<2.5	SW-846 6020A	NA
Zinc	7500	1323	1231.5	1310	885	1187.375	SW-846 6020A	PASS
Cyanide	NA	<1.2151	< 0.9479	< 0.8703	< 0.7342	< 0.942	EPA 9010	PASS
PHENOLS (Total)	NA	28.19	15.98	21.6	12	19.375	EPA9065	NA
ACI PBCs	49.99	ND	NA	NA	NA	NA	EPA 8082	NA

File Name: Q\Industry\WQ LEVEL LIMIT SAFETY LIMIT CHECK FOR ANNUAL PRETREATMENT REPORT

Created by: Ashley Barr 03-2014